Металлургия
Металлурги́я — (от греч. metallurgeo-добываю руду, обрабатываю металлы) — область науки и техники, отрасль промышленности[1] . К металлургии относятся:
- производство металлов из природного сырья и других металлсодержащих продуктов;
- получение сплавов;
- обработка металлов в горячем и холодном состоянии;
- сварка;
- нанесение покрытий из металлов;
- область материаловедения, изучающая физическое и химическое поведение металлов, интерметаллидов и сплавов.
К металлургии примыкает разработка, производство и эксплуатация машин, аппаратов, агрегатов, используемых в металлургической промышленности.
Разновидности металлургии
Металлургия подразделяется на чёрную и цветную. Чёрная металлургия включает добычу и обогащение руд чёрных металлов, производство чугуна, стали и ферросплавов. К чёрной металлургии относят также производство проката чёрных металлов, стальных, чугунных и других изделий из чёрных металлов. К цветной металлургии относят добычу, обогащение руд цветных металлов, производство цветных металлов и их сплавов. С металлургией тесно связаны коксохимия, производство огнеупорных материалов.
К чёрным металлам относят железо. Все остальные — цветные. По физическим свойствам и назначению цветные металлы условно делят на тяжёлые (медь, свинец, цинк, олово, никель) и лёгкие (алюминий, титан, магний).
По основному технологическому процессу подразделяется на пирометаллургию (плавка) и гидрометаллургию (извлечение металлов в химических растворах). Разновидностью пирометаллургии является плазменная металлургия.
Самыми распространенными металлами являются:
1) Алюминий
2) Железо
3) Медь
4) Цинк
5) Магний
Чёрная металлургия
Чёрная металлургия служит основой развития машиностроения (одна треть производимого металла идёт в машиностроение) и строительства (1/4 металла идёт в строительство).
Состав черной металлургии
В состав чёрной металлургии входят следующие основные подотрасли:
- добыча и обогащение руд чёрных металлов (железная, хромовая и марганцевая руда)
- добыча и обогащение нерудного сырья для чёрной металлургии (флюсовых известняков, огнеупорных глин и т. п.);
- производство чёрных металлов (чугуна, углеродистой стали, проката, металлических порошков чёрных металлов);
- производство стальных и чугунных труб;
- коксохимическая промышленность (производство кокса, коксового газа и пр.);
- вторичная обработка чёрных металлов (разделка лома и отходов чёрных металлов).
Металлургический цикл черной металлургии
Собственно металлургическим циклом является производство
1) чугунно-доменное производство,
2) стали (мартеновское, кислородноконвертерное и электросталеплавильное), (непрерывная разливка, МНЛЗ),
3) проката (прокатное производство).
Предприятия, выпускающие чугун, углеродистую сталь и прокат, относятся к металлургическим предприятиям полного цикла.
Предприятия без выплавки чугуна относят к так называемой передельной металлургии. «Малая металлургия» представляет собой выпуск стали и проката на машиностроительных заводах. Основным типом предприятий чёрной металлургии являются комбинаты.
В размещении чёрной металлургии полного цикла большую роль играет сырьё и топливо, особенно велика роль сочетаний железных руд и коксующихся углей.
Цветная металлургия
Цветная металлургия — отрасль металлургии, которая включает добычу, обогащение руд цветных металлов и выплавку цветных металлов и их сплавов. По физическим свойствам и назначению цветные металлы условно можно разделить на тяжёлые (медь, свинец, цинк, олово, никель) и лёгкие (алюминий, титан, магний). На основании этого деления различают металлургию лёгких металлов и металлургию тяжёлых металлов.
Размещение предприятий отрасли
Размещение предприятий цветной металлургии зависит от многих экономических и природных условий, особенно от сырьевого фактора. Заметную роль, помимо сырья, играет топливно-энергетический фактор.
На территории России сформировано несколько основных баз цветной металлургии. Различия их в специализации объясняются несхожестью географии лёгких металлов (алюминиевая, титано-магниевая промышленность) и тяжёлых металлов (медная, свинцово-цинковая, оловянная, никель-кобальтовая промышленности).
Тяжёлые металлы
Производство тяжёлых цветных металлов в связи с небольшой потребностью в энергии приурочено к районам добычи сырья.
По запасам, добыче и обогащению медных руд, а также по выплавке меди ведущее место в России занимает Уральский экономический район, на территории которого выделяются Красноуральский, Кировградский, Среднеуральский, Медногорский комбинаты.
Свинцово-цинковая промышленность в целом тяготеет к районам распространения полиметаллических руд. К таким месторождениям относятся Садонское (Северный Кавказ), Салаирское (Западная Сибирь), Нерченское (Восточная Сибирь) и Дальнегорское (Дальний Восток).
Центром Никель-Кобальтовой промышленности являются города: Норильск (Восточная Сибирь), Никель и Мончегорск (Северный экономический район).
Лёгкие металлы
Для получения лёгких металлов требуется большое количество энергии. Поэтому сосредоточение предприятий, выплавляющих легкие металлы, у источников дешёвой энергии — важнейший принцип их размещения.
Сырьём для производства алюминия являются бокситы Северо-Западного района (Бокситогорск), Урала (город Североуральск), нефелины Кольского полуострова (Кировск) и юга Сибири (Горячегорск). Из этого алюминиевого сырья в районах добычи выделяют окись алюминия — глинозём. Получение из него металлического алюминия требует больших затрат электроэнергии. Поэтому алюминиевые заводы строят вблизи крупных электростанций, преимущественно ГЭС (Братской, Красноярской и др.)
Титано-магниевая промышленность размещается преимущественно на Урале, как в районах добычи сырья (Березниковский титано-магниевый завод), так и в районах дешёвой энергии (Усть-Каменогорский титано-магниевый завод). Заключительная стадия титано-магниевой металлургии — обработка металлов и их сплавов — чаще всего размещается в районах потребления готовой продукции.
История
Первые свидетельства того, что человек занимался металлургией, относятся к 5-6 тысячелетиям до н. э. и были найдены в Майданпеке, Плочнике[2] и других местах в Сербии (в том числе медный топор 5500 лет до н. э., относящийся к культуре Винча)[3], Болгарии (5000 лет до н. э.), Палмеле (Португалия), Испании, Стоунхендже (Великобритания). Однако, как это нередко случается со столь давними явлениями, возраст не всегда может быть точно определён.
В культуре ранних времён присутствуют серебро, медь, олово и метеоритное железо, позволявшие вести ограниченную металлообработку. Так, высоко ценились «Небесные кинжалы» — египетское оружие, созданное из метеоритного железа 3000 лет до н. э. Но, научившись добывать медь и олово из горной породы и получать сплав, названный бронзой, люди в 3500 годы до н. э. вступили в Бронзовый век.
Получение железа из руды и выплавка металла было гораздо сложнее. Считается, что технология была изобретена хеттами примерно в 1200 году до н. э., что стало началом Железного века. Секрет добычи и изготовления железа стал ключевым фактором могущества филистимлян.
Следы развития чёрной металлургии можно отследить во многих прошлых культурах и цивилизациях. Сюда входят древние и средневековые королевства и империи Среднего Востока и Ближнего Востока, древний Египет и Анатолия (Турция), Карфаген, греки и римляне античной и средневековой Европы, Китай, Индия, Япония и т. д. Нужно заметить, что многие методы, устройства и технологии металлургии первоначально были придуманы в Древнем Китае, а потом и европейцы освоили это ремесло (изобретя доменные печи, чугун, сталь, гидромолоты и т. п.).
Тем не менее, последние исследования свидетельствуют о том, что технологии римлян были гораздо более продвинутыми, чем предполагалось ранее, особенно в области горной добычи и ковки.
Добывающая металлургия
Добывающая металлургия заключается в извлечении ценных металлов из руды и переплавке извлечённого сырья в чистый металл. Для того, чтобы превратить оксид или сульфид металла в чистый металл, руда должна быть отделена физическим, химическим или электролитическим способом.
Металлурги работают с тремя основными составляющими: сырьём, концентратом (ценный оксид или сульфид металла) и отходами. После добычи большие куски руды измельчаются до такой степени, когда каждая частица является либо ценным концентратом либо отходом.
Горные работы не обязательны, если руда и окружающая среда позволяют провести выщелачивание. Таким путём можно растворить минерал и получить обогащённый минералом раствор.
Зачастую руда содержит несколько ценных металлов. В таком случае отходы одного процесса могут быть использованы в качестве сырья для другого процесса.
Свойства металлов
Металлы в целом обладают следующими физическими свойствами:
Твердость.
Звукопроводность.
Высокая температура плавления.
Высокая температура кипения.
При комнатной температуре металлы находятся в твёрдом состоянии (за исключением ртути, единственного металла, находящегося в жидком состоянии при комнатной температуре).
Отполированная поверхность металла блестит.
Металлы — хорошие проводники тепла и электричества.
Обладают высокой плотностью.
Применения металлов
Медь обладает пластичностью и высокой электропроводностью. Именно поэтому она нашла свое широкое применение в электрических кабелях.
Золото и серебро очень тягучи, вязки и инертны, поэтому используются в ювелирном деле (особенно золото, которое не окисляется). Золото также используется для изготовления неокисляемых электрических соединений.
Железо и сталь обладают твердостью и прочностью. Благодаря этим их свойствам они широко используются в строительстве.
Алюминий ковок и хорошо проводит тепло. Он используется для изготовления кастрюль и фольги. Благодаря своей низкой плотности — при изготовлении частей самолётов.
Сплавы
Сплав — макроскопически однородная смесь двух или большего числа химических элементов с преобладанием металлических компонентов. Основной или единственной фазой сплава, как правило, является твёрдый раствор легирующих элементов в металле, являющемся основой сплава.
Сплавы имеют металлические свойства, например: металлический блеск, высокие электропроводность и теплопроводность. Иногда компонентами сплава могут быть не только химические элементы, но и химические соединения, обладающие металлическими свойствами. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана. Макроскопические свойства сплавов всегда отличаются от свойств их компонентов, а макроскопическая однородность многофазных (гетерогенных) сплавов достигается за счёт равномерного распределения примесных фаз в металлической матрице.
Сплавы обычно получают с помощью смешивания компонентов в расплавленном состоянии с последующим охлаждением. При высоких температурах плавления компонентов, сплавы производятся смешиванием порошков металлов с последующим спеканием (так получаются, например, многие вольфрамовые сплавы).
Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В состав многих сплавов могут вводиться и неметаллы, такие как углерод, кремний, бор и др. В технике применяется более 5 тыс. сплавов.
Сплавы, используемые в промышленности различаются по своему предназначению.
Конструкционные сплавы:
- стали
- чугуны
- дюралюминий
Конструкционные со специальными свойствами (например, искробезопасность, антифрикционные свойства):
- бронзы
- латуни
Для заливки подшипников:
- баббит
Для измерительной и электронагревательной аппаратуры:
- манганин
- нихром
Для изготовления режущих инструментов:
- победит В промышленности также используются жаропрочные, легкоплавкие и коррозионностойкие сплавы, термоэлектрические и магнитные материалы, а также аморфные сплавы.
Наиболее часто используются сплавы алюминия, хрома, меди, железа, магния, никеля, титана и цинка. Много усилий было уделено изучению сплавов железа и углерода. Обычная углеродистая сталь используется для создания дешёвых, высокопрочных изделий, когда вес и коррозия не критичны.
Нержавеющая или оцинкованная сталь используется, когда важно сопротивление коррозии. Алюминиевые и магниевые сплавы используются, когда требуются прочность и легкость.
Медно-никелевые сплавы (такие, как монель-металл) используются в коррозионно-агрессивных средах и для изготовления ненамагничиваемых изделий. Суперсплавы на основе никеля (например, инконель) используются при высоких температурах (турбонагнетатели, теплообменники и т. п.). При очень высоких температурах используются монокристаллические сплавы.
|